NAMPT-Mediated NAD(+) Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-organ Insulin Sensitivity in Mice.

نویسندگان

  • Kelly L Stromsdorfer
  • Shintaro Yamaguchi
  • Myeong Jin Yoon
  • Anna C Moseley
  • Michael P Franczyk
  • Shannon C Kelly
  • Nathan Qi
  • Shin-Ichiro Imai
  • Jun Yoshino
چکیده

Obesity is associated with adipose tissue dysfunction and multi-organ insulin resistance. However, the mechanisms of such obesity-associated systemic metabolic complications are not clear. Here, we characterized mice with adipocyte-specific deletion of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting NAD(+) biosynthetic enzyme known to decrease in adipose tissue of obese and aged rodents and people. We found that adipocyte-specific Nampt knockout mice had severe insulin resistance in adipose tissue, liver, and skeletal muscle and adipose tissue dysfunction, manifested by increased plasma free fatty acid concentrations and decreased plasma concentrations of a major insulin-sensitizing adipokine, adiponectin. Loss of Nampt increased phosphorylation of CDK5 and PPARγ (serine-273) and decreased gene expression of obesity-linked phosphorylated PPARγ targets in adipose tissue. These deleterious alterations were normalized by administering rosiglitazone or a key NAD(+) intermediate, nicotinamide mononucleotide (NMN). Collectively, our results provide important mechanistic and therapeutic insights into obesity-associated systemic metabolic derangements, particularly multi-organ insulin resistance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autocrine effects of visfatin on hepatocyte sensitivity to insulin action.

Visfatin was originally described as an adipokine with insulin mimetic effects. Recently, it was found that visfatin is identical with the Nampt (nicotinamide phosphoribosyltransferase) gene that codes for an intra- and extracellular NAD biosynthetic enzyme and is predominantly expressed outside the adipose tissue. In the current study, we found strong protein and mRNA expression of visfatin in...

متن کامل

Visfatin is involved in TNFα-mediated insulin resistance via an NAD+/Sirt1/PTP1B pathway in 3T3-L1 adipocytes

Tumor necrosis factor α (TNFα) is a well-known mediator of inflammation in the context of obesity in adipose tissue. Its action appears to be directly linked to perturbations of the insulin pathway, leading to the development of insulin resistance. Visfatin has been suspected to be linked to insulin sensitivity, but the mechanism involved is still partly unknown. The aim of this study was to ev...

متن کامل

Therapeutic potential of SIRT1 and NAMPT-mediated NAD biosynthesis in type 2 diabetes.

Both genetic and environmental factors contribute to the pathogenesis of type 2 diabetes, and it is critical to understand the interplay between these factors in the regulation of insulin secretion and insulin sensitivity to develop effective therapeutic interventions for type 2 diabetes. For the past several years, studies on the mammalian NAD-dependent protein deacetylase SIRT1 and systemic N...

متن کامل

Biguanide therapy for diabetes and cancer & a novel methyltransferase that regulates energy expenditure and adiposity and is elevated in many cancers

Compounds containing guanidine-related molecules have been used since medieval times to relieve symptoms of diabetes mellitus. Guanidine itself was too toxic but two linked guanidine rings (biguanides) were useful and generally safer. For 20 years, phenformin was used before adverse effects led to removal from the US and European markets. Metformin continues to be widely prescribed for diabetes...

متن کامل

The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells.

Recent studies have revealed new roles for NAD and its derivatives in transcriptional regulation. The evolutionarily conserved Sir2 protein family requires NAD for its deacetylase activity and regulates a variety of biological processes, such as stress response, differentiation, metabolism, and aging. Despite its absolute requirement for NAD, the regulation of Sir2 function by NAD biosynthesis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2016